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Abstract. A relativistic equation is derived for a slowly varying potential by suitably 
approximating the one-dimensional Duac equation. This equation is shown to be akin to 
the ScWinger  equation with an effective potential and effective eigenvalues. An iterative 
procedure for solving this equation is indicated. As an application. the rela6vistic lreatment of 
the Mathieu potential on the basis ofthis equation is considered and results are compared with 
those obtained by solving the exact one-dimensional D h c  equation. These results are iiliely to 
lake adequate account of the relativistic impacts on electrons near Fermi levels in metals. 

1. Introduction 

The quantum mechanical behaviour of one-dimensional (ID) electrons with relativistic 
velocities has to be studied using the ID Dirac equation. The ID Dirac equation attracted 
the attention of many authors [l, 21 almost immediately after the formulation of the original 
Dirac equation. In particular, the ID Dirac equation has found widespread applications in 
condensed matter physics 13-14]. 

In solving the Dirac equation, it is obviously necessary to handle coupled first-order 
differential equations involving the elements of the relevant spinors. Approximated solutions 
are frequently obtained by neglecting some elements of the spinor which are small only in 
the non-relativistic limit. In this paper, we report an approximate form of the ID Dirac 
equation for slowly varying potential and indicate how this equation can be made akin to 
the Schrodinger equation by introducing the idea of an effective potential and effective 
eigenvalues. Furthermore, we (i) compare critically this equation with other approximate 
ID Dirac equations relevant to high-energy electrons; (ii) elucidate an iterative procedure 
for solving this equation; (iii) point out the systems to which the equation can be applied; 
and (iv) indicate its degree of utility considering the case of the Mathieu potential. 

The paper is organized as follows. Some general aspects of the 1D Dirac equation, which 
are required for obtaining our approximate equation, are first discussed in section 2. The 
derivation of the approximate equation and some related issues are presented in section 3. 
To check the accuracy of the approximate equation, the relativistic Mathieu potential, which 
is of interest in condensed matter physics, is considered in section 4. Finally, in section 5 ,  
the salient features of our equation, and its applicability, are discussed. 
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2. Some aspects of the ID Dirac equation 

The (ID) time-independent Dirac equation for an electron of  rest mass m, moving in an 
electrostatic-like potential V ( x )  along the x-axis, appears as [3,15] 

d* - ificuz- +mc2uzll, = [ER - V ( x ) ] $  
dx 

where + is a two-component spinor given by 

.* = (;:) 
and where the U ' S  denote the 2 x 2 Pauli matrices, ER is the relativistic energy eigenvalue 
and c is the velocity of light. Equation (1) can be split into the following equations: 

For convenience, we introduce the notation E ER - mc2; E is nothing but the electron 
energy without the rest-mass energy and it can therefore be directly compared with the non- 
relativistic energy. The primes used in the above equations, and subsequently throughout 
this paper, denote differentiation with respect to x .  We can decouple (3), in the standard 
fashion, to obtain the following two (second-order) equations: 

with 

Let 4 ( x )  and G l ( x )  be two particular solutions of ( 4 ~ ) .  Then, its general solution can be 
simply written as follows 

$1 = aFi(x) + bGi(x)  (5) 

where a and b are two arbitraty constants, Since the lower component h is related to the 
upper component +I through (3b), we can obtain the spinor 111 as 



A relativistic equation for a slowly varying potential 3541 

where we have defined 

The general spinor solution of the ID Dirac equation (1) is given by (6). We insert here 
the form of (6) for the special case of a constant potential, as we shall require this form 
later. For a constant potential, say, VO, the two functions f ( x )  and g ( x )  appearing in ( 4 4  
and (4b) vanish and q ( x )  is constant. Solutions of ( 4 4  and (46) are plane waves of the 
form 

F l ( x )  = exp(iKx) 

Gl(x) = exp(-iKx) 

where K 2  = ( E  - V& + 2mcZ - V0)/h2c2. Using (7). we obtain the following spinor for 
a constant potential 

with y ,/(E - VO)/(E + 2mc2 - VO). 

3. The approximate relatihtic equation (ARE) and related aspects 

3.1. Derivation of the ARE 

The general spinor $, given by (6), can be written as 

where 

Hence, A ( x )  and B ( x )  may be used to obtain the relative phase of the upper and lower 
components of the particular spinors appearing in (IO). Comparing (9) and (lo), we find 

A = y  

B = -y 

for the constant-potential case. For a slowly varying potential, we can reasonably assume 
that A ( x )  and B ( x )  correspond to (1 la) and (1 lb), respectively, with replacement of VO by 
the slowly varying potential V ( x ) .  The value of y is always less than unity and it increases 
with the velocity of the electron. However, even for velocities as high as lo9 cm s-', which 



3542 

is of the order of velocities in crystalline solids of heavy atoms, y is around 
have the following condition on y for such velocities 
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We thus 

y << 1. (12) 

As IA(x)l and IB(x)l are formally close to y for a slowly varying potential, they would also 
conform to the following condition for electron velocities going up to about IO9 cm s-I: 

A ( x )  << 1 (134 

, B ( x )  << 1. ( I  3b) 

Using (10) and (13), we have 

where F l ( x )  and Gl(x) are particular solutions of (4a). Since we are considering high- 
velocity electrons in a slowly varying potential and 2mcZ is about 1 MeV, we can assume 
that 

v'(X) <<E h C z  - v(X) (154 

f ( x )  N 0. (15b) 

Therefore, taking @ for FI or GI,  we can reduce equation (46) to 

(16) 
2m 

4'" + -1v - U ( x ) I @ ( x )  = 0 h= 

where 

&(E + 2mcZ) 
2mc2 1 1 =  

EV(X) v 2 ( X )  V,(x) = - - - 
mc2 h c l '  

The ARE we sought to derive is given by (16). The,form of this equation is seen to be the 
same as the Schradinger equation for a particle moving in a potential U ( x )  with eigenvalue 
1. We may interpret U ( x )  as an effective potential and q as an effective eigenvalue. Instead 
of solving the ID Dirac equation (1) involved with the two-component spinor $, we may 
now deal with (16) (with only a one-component wavefunction (4)) to obtain fairly reliable 
information about the quantum mechanical behaviour of high-energy electrons in a slowly 
varying potential. 
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3.2. Comparison between ARE and other approximate relativistic equations 

Somc authors [I61 havc used the following approximate equation to study relativistic impacts 
on the motion of electrons in a potential V ( x )  

2m 
@"(x) + - [ E  + Wt - V ( X ) ~ @ ( X )  = 0 (18) 

h2 

where E is the energy eigenvalue and 

P 4  w, = - 
8m3c2' 

W I  decribes the mass-energy correction term, up to a first-order approximation, applied to 
the Hamiltonian given below 

H = ,im - mcz + v ( x ) .  (20) 

Equation (18) is a Schrodinger equation with a Hamiltonian given by 

Hs = Ho - Wt (21) 

where HO = p2/2m is the non-relativistic Hamiltonian. We note that (16) can be rewritten 
as 

(22) 
2m 
h 

@"(x) + -+E + w, - V ( x )  - V t ( x ) l @ ( x )  = 0. 

In arriving at this equation, we have used the fact that 6 Y p2/2m; this assumption is not 
unjustified for high-energy electrons because the kinetic energy of such electrons is likely 
to be much higher than their potential energy. Now, equation (22) (or equivalently (16)) 
is seen to differ from (18) with respect to the presence of the term V , ( x )  in the former. 
Equation (18) is derived by adding the term WI to the non-relativistic Hamiltonian Ho. On 
the other hand, equation (22) (or (16)) is extracted from the ID Dirac equation (1) (which 
is involved with a two-component spinor) and the occurrence of V j ( x )  is a consequence of 
this derivational procedure. 

3.3. Solution of the ARE 

Equation (16) may be solved by an iterative procedure. To arrive at the procedure, we first 
write this equation as 

(23) 
2m 

$ " ( X )  + TbJ - V d x )  - V3(X)lNX) = 0 

where 
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The entity E would generally conform to the condition E > -mc2? i.e. the quantum state 
does not dive into the negative energy continuum. Using this condition, along with the 
definition of the parameter q (17~). one obtains 
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The term V, in (23) involves E and, hence, 7. The presence of this term makes it 
difficult to solve (23). However, the value of V, is likely to be much smaller than Vz, 
due to the occurrence of the factor mcz in the denominator of the former. Hence, we can 
develop an iterative procedure for solving (24) as follows. We first take V, = 0 and solve 
the following equation for q 

With 17 thus obtained, we get E from (25) and then V, from (246). With this V, we can 
solve (16) and the process is repeated until we attain self-consistency. 

4. The relativistic Mathieu problem 

In this section we study the relativistic Mathieu problem, that is, the dynamics of a relativistic 
particle under the action of a cosine potential. This alIows us to investigate the accuracy 
of the ARE in dealing with a potential of interest in solid-state physics. In fact, the 
Mathieu potential can explain the interaction of high-energy electrons with crystals 1161, so a 
relativistic treatment for this potential is indeed required. While the non-relativistic Mathieu 
problem has been well studied, and analytical solutions are available, very little work has 
been done in the relativistic regime. As regards the research done in this field, Steslicka et 
al 1161 looked at the first-order relativistic corrections to the Schrodinger equation, whereas 
Mendez et al [17,18] devised techniques for solving the ID Dirac equation for general 
periodic potentials with application to the Mathieu potential. Scalar-like cosine potentials 
connected with ID relativistic nuclear models were considered by Clerk 1191. 

The potential used in ow numerical study is V ( x )  = 0 . 2 ~ 0 ~ 2 ~ .  In what follows we 
use units such that f i  = 2m = c = 1; the lattice period is L = I in our case. Since the 
potential is periodic, the Bloch theorem holds so that the solution of the ID Dirac equation 
( I )  is of the form $ = exp(ikx)C, where C is periodic with the same period as that of the 
potential, and k is the crystal momentum. Since the effective potential U@), appearing in 
(16), is also periodic (with period L = I), the general solution of the ARE satisfies the Bloch 
theorem. We aim to compare the dispersion relation (energy against crystal momentum) 
obtained with ARE (16) with the dispersion relation obtained by directly solving the ID 
Dirac equation (1). In addition, relativistic results are compared with non-relativistic ones. 
The wave equations (SchrOdinger, Dirac, ARE) for the Mathieu potential have been solved 
numerically by following a technique outlined by Mendez et al 1171 based on the properties 
of periodic-continued fractions. To this end, the corresponding wave equation is discretized 
on a grid of the unit cell [0, I] (Io0 points are more than enough to obtain very accurate 
results); energy band edges and the dispersion law inside allowed bands are found by means 
of three-term recurrence relations (see 1171 for details). Results are presented in figure 1. 

Comparing the plots in figure 1 corresponding to relativistic calculations, we find that 
the dispersion relation given by the ARE agrees well with that corresponding to the I D  Duac 
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Figurr 1. Relativistic (left) and non-relativistic (right) dispersion relations in the potentid 
V ( x )  = O.Zcos2r for a panicle of rest mnss m = 0.5. The ARE results (dashed curve) fit well 
with the exact results (solid curve) obtained by directly solving the ID Dirac equation. 

equation, except for k values near the edge of the Brillouin zone (k = 1). The ARE predicts 
an energy gap somewhat larger than the (truly) relativistic value. It is worth mentioning 
that the ARE gap is almost the same as the non-relativistic one. This result agrees well with 
the pertwbative calculations of Steslicka et al [ 161, who found that relativity (up to first 
order) causes a shrinkage of allowed bands, whereas the gaps remain unchanged. However, 
it is known that the ID Dirac equation predicts a shrinkage of both allowed hands and gaps 
[17], as seen in figure 1. Hence, we may conclude that the decrease of the gap width comes 
mainly from the gradient of the potential which is neglected in ARE. 

5. Discussion and conclusions 

The course of derivation of our approximately relativistic equation (16) shows that it rests 
on two assumptions: (i) that V ( x )  is slowly varying, and (ii) that the maximum velocity of 
the electrons goes to about lo9 cm s-’ . Both these assumptions are satisfied by electrons 
near the Fermi energy level in metals. Also, we have noted in the previous section that 
there exists a high degree of agreement between the results yielded by ARE (16) and the 
ID Dirac equation. Hence, equation (16) is likely to provide an adequate account of the 
relativistic effects on the electronic properries of metals without requiring us to tackle the 
complications involved with two-component spinors in the corresponding Dirac equation. 
As an approximation, equation (16) is more accurate than (18). This is because the former 
incorporates a mass-energy correction as well as some influence from the (truly relativistic) 
Dirac equation, whereas the latter only includes the mass-energy correction. 
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